Ribasim Delwaq coupling

In order to generate the Delwaq input files, we need a completed Ribasim simulation (typically one with a results folder) that ideally also includes some substances and initial concentrations. Let’s take the basic test model for example, which already has set some initial concentrations.

All testmodels can be downloaded from here.

from pathlib import Path

toml_path = Path("../../generated_testmodels/basic/ribasim.toml")

assert toml_path.is_file()

This Ribasim model already has substance concentrations for Cl and Tracer in the input tables, and we will use these to generate the Delwaq input files.

from ribasim import Model

model = Model.read(toml_path)

display(model.basin.concentration_state)  # basin initial state
display(model.basin.concentration)  # basin boundaries
display(model.flow_boundary.concentration)  # flow boundaries
display(model.level_boundary.concentration)  # level boundaries
model.plot();  # for later comparison
Basin / concentration_state
node_id substance concentration
fid
0 1 Cl 0.0
1 3 Cl 0.0
2 6 Cl 0.0
3 9 Cl 0.0
Basin / concentration
node_id time substance drainage precipitation
fid
0 1 2020-01-01 00:00:00 Cl 0.0 0.0
1 1 2020-01-02 00:00:00 Cl 1.0 1.0
2 1 2020-01-01 00:00:00 Tracer 1.0 1.0
3 3 2020-01-01 00:00:00 Cl 0.0 0.0
4 3 2020-01-02 00:00:00 Cl 1.0 1.0
5 3 2020-01-01 00:00:00 Tracer 1.0 1.0
6 6 2020-01-01 00:00:00 Cl 0.0 0.0
7 6 2020-01-02 00:00:00 Cl 1.0 1.0
8 6 2020-01-01 00:00:00 Tracer 1.0 1.0
9 9 2020-01-01 00:00:00 Cl 0.0 0.0
10 9 2020-01-02 00:00:00 Cl 1.0 1.0
11 9 2020-01-01 00:00:00 Tracer 1.0 1.0
FlowBoundary / concentration
node_id time substance concentration
fid
0 15 2020-01-01 00:00:00 Cl 0.0
1 15 2020-01-01 00:00:00 Tracer 1.0
2 16 2020-01-01 00:00:00 Cl 0.0
3 16 2020-01-01 00:00:00 Tracer 1.0
LevelBoundary / concentration
node_id time substance concentration
fid
0 11 2020-01-01 00:00:00 Cl 34.0
1 17 2020-01-01 00:00:00 Cl 34.0

model.basin.profile
Basin / profile
node_id area level
fid
0 1 0.01 0.0
1 1 1000.0 1.0
2 3 0.01 0.0
3 3 1000.0 1.0
4 6 0.01 0.0
5 6 1000.0 1.0
6 9 0.01 0.0
7 9 1000.0 1.0

Let’s add another tracer to the model, to setup a fraction calculation.

from ribasim.delwaq import add_tracer

add_tracer(model, 11, "Foo")
add_tracer(model, 15, "Bar")
display(model.flow_boundary.concentration)  # flow boundaries
display(model.level_boundary.concentration)  # flow boundaries

model.write(toml_path)
FlowBoundary / concentration
node_id time substance concentration
fid
0 15 2020-01-01 00:00:00 Cl 0.0
1 15 2020-01-01 00:00:00 Tracer 1.0
2 16 2020-01-01 00:00:00 Cl 0.0
3 16 2020-01-01 00:00:00 Tracer 1.0
4 15 2020-01-01 00:00:00 Bar 1.0
LevelBoundary / concentration
node_id time substance concentration
fid
0 11 2020-01-01 00:00:00 Cl 34.0
1 17 2020-01-01 00:00:00 Cl 34.0
2 11 2020-01-01 00:00:00 Foo 1.0
PosixPath('../../generated_testmodels/basic/ribasim.toml')

Given the path to a completed Ribasim simulation, we can call ribasim.delwaq.generate for generating the required input files for Delwaq from scratch.

from ribasim.delwaq import generate

output_path = Path("../../generated_testmodels/basic/delwaq")

graph, substances = generate(toml_path, output_path)
/home/runner/work/Ribasim/Ribasim/python/ribasim/ribasim/delwaq/generate.py:415: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This call produces a handful of files in the user defined folder. Let’s take a look at them:

list(output_path.iterdir())
[PosixPath('../../generated_testmodels/basic/delwaq/ribasim.vol'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim_bndlist.inc'),
 PosixPath('../../generated_testmodels/basic/delwaq/bndlist.csv'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.atr'),
 PosixPath('../../generated_testmodels/basic/delwaq/flows.csv'),
 PosixPath('../../generated_testmodels/basic/delwaq/delwaq.inp'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.are'),
 PosixPath('../../generated_testmodels/basic/delwaq/B5_bounddata.inc'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.nc'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.vel'),
 PosixPath('../../generated_testmodels/basic/delwaq/volumes.csv'),
 PosixPath('../../generated_testmodels/basic/delwaq/dimr_config.xml'),
 PosixPath('../../generated_testmodels/basic/delwaq/network.csv'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.flo'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.len'),
 PosixPath('../../generated_testmodels/basic/delwaq/ribasim.poi')]

These files form a complete Delwaq simulation, and can be run by either pointing DIMR to the dimr_config.xml file or pointing Delwaq to the delwaq.inp file.

Note that the call to generate produces two output variables; graph and substances that are required for parsing the results of the Delwaq model later on. Nonetheless, we can also inspect them here, and inspect the created Delwaq network.

substances  # list of substances, as will be present in the Delwaq netcdf output
{'Bar',
 'Cl',
 'Continuity',
 'Drainage',
 'FlowBoundary',
 'Foo',
 'Initial',
 'LevelBoundary',
 'Precipitation',
 'Terminal',
 'Tracer',
 'UserDemand'}

As you can see, the complete substances list is a combination of user input (Cl and Tracer in the input tables), a Continuity tracer, and tracers for all nodetypes in the Ribasim model. The latter tracers allow for deeper inspection of the Ribasim model, such as debugging the mass balance by plotting fraction graphs. Let’s inspect the graph next, which is the Delwaq network that was created from the Ribasim model:

import matplotlib.pyplot as plt
import networkx as nx

# Let's draw the graph
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
nx.draw(
    graph,
    pos={k: v["pos"] for k, v in graph.nodes(data=True)},
    with_labels=True,
    labels={k: k for k, v in graph.nodes(data=True)},
    ax=ax[0],
)
ax[0].set_title("Delwaq node IDs")
nx.draw(
    graph,
    pos={k: v["pos"] for k, v in graph.nodes(data=True)},
    with_labels=True,
    labels={k: v["id"] for k, v in graph.nodes(data=True)},
    ax=ax[1],
)
ax[1].set_title("Ribasim node IDs")
fig.suptitle("Delwaq network");

Here we plotted the Delwaq network twice, with the node IDs as used by Delwaq on the left hand side, and the corresponding Ribasim node IDs on the right hand side. As you can see, the Delwaq network is very similar to the Ribasim network, with some notable changes:

1 Parsing the results

With Delwaq having run, we can now parse the results using ribasim.delwaq.parse. This function requires the graph and substances variables that were output by ribasim.delwaq.generate, as well as the path to the results folder of the Delwaq simulation.

from ribasim.delwaq import parse

nmodel = parse(toml_path, graph, substances, output_folder=output_path)

The parsed model is identical to the Ribasim model, with the exception of the added concentration_external table that contains all tracer results from Delwaq.

display(nmodel.basin.concentration_external)
print(substances)
t = nmodel.basin.concentration_external.df
t[t.time == t.time.unique()[2]]
Basin / concentration_external
time node_id concentration substance
fid
0 2020-01-01 00:00:00 1 0.0 Terminal
1464 2020-01-01 00:00:00 1 1.0 Continuity
2928 2020-01-01 00:00:00 1 0.0 Bar
4392 2020-01-01 00:00:00 1 1.0 Initial
5856 2020-01-01 00:00:00 1 0.0 FlowBoundary
... ... ... ... ...
11711 2020-12-31 00:00:00 9 0.330137 Precipitation
13175 2020-12-31 00:00:00 9 0.970239 Tracer
14639 2020-12-31 00:00:00 9 0.0 Drainage
16103 2020-12-31 00:00:00 9 0.010949 Foo
17567 2020-12-31 00:00:00 9 0.0 UserDemand

17568 rows × 4 columns

{'Terminal', 'Continuity', 'Bar', 'Initial', 'FlowBoundary', 'LevelBoundary', 'Cl', 'Precipitation', 'Tracer', 'Drainage', 'Foo', 'UserDemand'}
time node_id concentration substance
fid
8 2020-01-03 00:00:00 1 0.0 Terminal
1472 2020-01-03 00:00:00 1 1.0 Continuity
2936 2020-01-03 00:00:00 1 0.0 Bar
4400 2020-01-03 00:00:00 1 0.044259 Initial
5864 2020-01-03 00:00:00 1 0.744403 FlowBoundary
7328 2020-01-03 00:00:00 1 0.034251 LevelBoundary
8792 2020-01-03 00:00:00 1 1.164538 Cl
10256 2020-01-03 00:00:00 1 0.177087 Precipitation
11720 2020-01-03 00:00:00 1 0.92149 Tracer
13184 2020-01-03 00:00:00 1 0.0 Drainage
14648 2020-01-03 00:00:00 1 0.034251 Foo
16112 2020-01-03 00:00:00 1 0.0 UserDemand
9 2020-01-03 00:00:00 3 0.0 Terminal
1473 2020-01-03 00:00:00 3 1.0 Continuity
2937 2020-01-03 00:00:00 3 0.0 Bar
4401 2020-01-03 00:00:00 3 0.029275 Initial
5865 2020-01-03 00:00:00 3 0.0 FlowBoundary
7329 2020-01-03 00:00:00 3 0.851086 LevelBoundary
8793 2020-01-03 00:00:00 3 28.936922 Cl
10257 2020-01-03 00:00:00 3 0.119639 Precipitation
11721 2020-01-03 00:00:00 3 0.119639 Tracer
13185 2020-01-03 00:00:00 3 0.0 Drainage
14649 2020-01-03 00:00:00 3 0.851086 Foo
16113 2020-01-03 00:00:00 3 0.0 UserDemand
10 2020-01-03 00:00:00 6 0.0 Terminal
1474 2020-01-03 00:00:00 6 1.0 Continuity
2938 2020-01-03 00:00:00 6 0.748699 Bar
4402 2020-01-03 00:00:00 6 0.032499 Initial
5866 2020-01-03 00:00:00 6 0.748699 FlowBoundary
7330 2020-01-03 00:00:00 6 0.03994 LevelBoundary
8794 2020-01-03 00:00:00 6 1.357952 Cl
10258 2020-01-03 00:00:00 6 0.178862 Precipitation
11722 2020-01-03 00:00:00 6 0.927561 Tracer
13186 2020-01-03 00:00:00 6 0.0 Drainage
14650 2020-01-03 00:00:00 6 0.03994 Foo
16114 2020-01-03 00:00:00 6 0.0 UserDemand
11 2020-01-03 00:00:00 9 0.0 Terminal
1475 2020-01-03 00:00:00 9 1.0 Continuity
2939 2020-01-03 00:00:00 9 0.04955 Bar
4403 2020-01-03 00:00:00 9 0.0078 Initial
5867 2020-01-03 00:00:00 9 0.04955 FlowBoundary
7331 2020-01-03 00:00:00 9 0.913229 LevelBoundary
8795 2020-01-03 00:00:00 9 31.049776 Cl
10259 2020-01-03 00:00:00 9 0.029421 Precipitation
11723 2020-01-03 00:00:00 9 0.078971 Tracer
13187 2020-01-03 00:00:00 9 0.0 Drainage
14651 2020-01-03 00:00:00 9 0.002296 Foo
16115 2020-01-03 00:00:00 9 0.0 UserDemand

We can use this table to plot the results of the Delwaq model, both spatially as over time.

from ribasim.delwaq import plot_fraction

plot_fraction(nmodel, 1)  # default tracers, should add up to 1
plot_fraction(nmodel, 9, ["Foo", "Bar"])  # custom tracers
plot_fraction(nmodel, 9, ["Continuity"])  # mass balance check

from ribasim.delwaq import plot_spatial

plot_spatial(nmodel, "Bar")
plot_spatial(nmodel, "Foo", versus="Bar")  # ratio of Meuse to Rhine